Publications
-
Lightweight Deep Learning for Photovoltaic Energy Prediction: Optimizing Decarbonization in Winter Houses
This paper proposes an innovative hybrid multivariate deep learning approach to predict photovoltaic (PV) energy production in winter houses, with a focus on lightweight models with low environmental impact. A methodology is developed to assess the carbon footprint of these models, considering training energy consumption, operational CO2 emissions, and energy savings from PV production optimization. […]
-
Deterministic Scheduling of Periodic Messages for Low Latency in Cloud RAN
Cloud-RAN (C-RAN) is a cellular network architecture where pro- cessing units, previously attached to antennas, are centralized in data centers. The main challenge in meeting protocol time con- straints is minimizing the latency of periodic messages exchanged between antennas and processing units. We demonstrate that sta- tistical multiplexing introduces significant logical latency due to buffering […]
-
Minimizing the total completion time for a class of semi-online single machine scheduling problems
Semi-online single machine scheduling problems with information on jobs’ processing times and the objective to minimize the total completion time are considered. In these problems, a set of jobs arriving over time are to be scheduled on a single machine and their characteristics become known only upon arrival. Some of the studied problems are shown […]
-
Exploring Emotion Expression Recognition in Older Adults Interacting with a Virtual Coach
The EMPATHIC project aimed to design an emotionally expressive virtual coach capable of engaging healthy seniors to improve well-being and promote independent aging. In particular, the system’s human sensing capabilities allow for the perception of emotional states to provide a personalized experience. This paper outlines the development of the emotion expression recognition module of the […]
-
Calibration améliorée d’un capteur profileur laser pour l’inspection et la reconstruction 3D
Au cours des dernières décennies, l’inspection et la reconstruction tridimensionnelle des canalisations de gaz et d’eau ont nécessité l’utilisation de capteurs de haute précision capables de fonctionner dans des environnements confinés et à faible texture, posant ainsi des défis aux technologies de détection conventionnelles. Cet article présente la conception, tant matérielle que logicielle, d’un capteur […]
-
Occupant behavior and impact of the HVAC system on occupant comfort in two-person offices in a mediterranean climate in the south of France
The Mediterranean climate of the south of France is characterized by a long and hot summer season. Under these conditions, it is important to understand the impact of the HVAC system on the comfort of office occupants as well as their adaptive behaviors to create a comfortable indoor thermal environment. The objective of this study […]
-
Une approche divisive et interprétable de réduction de dimension pour la prédiction de la RUL
En maintenance, la prédiction de la durée de vie utile restante (RUL) est entravée par la grande dimensionnalité et le manque d’explicabilité. Cette étude propose une approche combinant une méthode innovante de réduction de dimension interprétable, l’IDFC (Interpretable Divisive Feature Clustering), et un modèle LSTM (Long Short-Term Memory) à une couche. L’IDFC s’inspire des algorithmes […]
-
Building Fast Dynamic 3D Maps for Trajectory Planning of Autonomous Ground Vehicles Using Non-Repetitive Scanning LiDAR Sensor
Building fast and reliable maps of the environment is a fondamental task for autonomous navigation. However, this process offers several challenges such as accurate registration of 3D point clouds. Recently, non-repetitive scanning LiDAR sensors have emerged as a promising alternative for 3D data acquisition, leveraging some of these challenges. In this paper, we present a […]
-
Double-Layer Soft Data Fusion for Indoor Robot WiFi-Visual Localization
This paper presents a novel WiFi-Visual data fusion method for indoor robot (TIAGO++) localization. Long-term follow-up experiments show that this method can use 10 WiFi samples and 4 low-resolution images ($58 times 58$ in pixels) to localize an indoor robot with an average error distance of about 1.32 meters 3 months (or 1.7 meters 7 […]
-
Chemical servoing with hexapod robot for gas source localization and YOLO‑based visual defect detection
Robotic systems have the ability to perform industrial inspection tasks through the integration of visual and chemical servoing functions. A commonly used system is the image-based servoing system. This study presents an innovative approach that merges chemical servoing with visual defect detection in industrial settings using a hexapod robot. The main goal is to develop […]
-
Etude de cas : L’optimisation d’une unité industrielle d’osmose inverse (OI) via l’intégration d’un jumeau numérique (JN) et de la réalité augmentée (RA).
L’osmose inverse (OI) est un procédé essentiel pour la production d’eau ultrapure dans divers secteurs industriels, mais son optimisation se heurte à des défis significatifs : complexité des paramètres physico-chimiques, maintenance prédictive des membranes, exigences de traçabilité et risques d’erreurs humaines [1-5]. L’émergence des technologies de l’Industrie 4.0, notamment le jumeau numérique (JN) [6, 8] […]
-
Role tension and perceived leadership influence on middle managers’ transformational leadership
Objectives & Literature Middle managers in the nuclear sector, as in other organizations, are key players in implementing policies and strategy. They are frequently exposed to paradoxical leadership styles and demands (Berti et Simpson, 2021). It gives rise to role tensions (i.e., role conflict, organizational cynicism, or cognitive dissonance) for middle managers (Razouk et Quéméner, […]
Loading…
Erreur : tout le contenu a été chargé.