Filter results


Publications

    • Paper
    • Engineering and Numerical Tools

    Metaheuristic and Reinforcement Learning Techniques for Solving the Vehicle Routing Problem: A Literature Review

    The Vehicle Routing Problem remains a pivotal challenge in combinatorial optimization, where the objective is to determine optimal routes for a fleet of vehicles serving geographically distributed customers under specific constraints. Over decades, a diverse spectrum of solution methodologies—spanning exact algorithms, heuristics, metaheuristics, and, more recently, machine learning—has emerged. This review critically examines the intersection […]

    • Conference
    • Engineering and Numerical Tools

    A Novel Approach for Optimal Power Smoothing in Floating Offshore Wind Turbine Conversion Chains

    The study proposes using battery storage systems to smooth floating offshore wind turbine (FWOT) power. However, FOWT, battery, and grid interact complexly; therefore, power flow should be optimized. This research provides a power management method that manages power flow between the FOWT and battery to smooth power grid injection.

    • Conference
    • Engineering and Numerical Tools

    An innovative Machine Learning model for predicting compressive strength of biobased concretes

    Biobased concretes, which incorporate renewable and environmentally friendly components such as plant-based aggregates, offer a promising alternative to conventional materials. However, their widespread adoption is hindered by several challenges such as variability in raw materials, complex interactions between components, the lack of standardized methodologies, and requirement of advanced technics for characterizing and optimizing their mechanical […]

    • Paper
    • Engineering and Numerical Tools

    Minimizing the total completion time for a class of semi-online single machine scheduling problems

    Semi-online single machine scheduling problems with information on jobs’ processing times and the objective to minimize the total completion time are considered. In these problems, a set of jobs arriving over time are to be scheduled on a single machine and their characteristics become known only upon arrival. Some of the studied problems are shown […]

    • Paper
    • Engineering and Numerical Tools

    Lightweight Deep Learning for Photovoltaic Energy Prediction: Optimizing Decarbonization in Winter Houses

    This paper proposes an innovative hybrid multivariate deep learning approach to predict photovoltaic (PV) energy production in winter houses, with a focus on lightweight models with low environmental impact. A methodology is developed to assess the carbon footprint of these models, considering training energy consumption, operational CO2 emissions, and energy savings from PV production optimization. […]

    • Paper
    • Engineering and Numerical Tools

    Deterministic Scheduling of Periodic Messages for Low Latency in Cloud RAN

    Cloud-RAN (C-RAN) is a cellular network architecture where pro- cessing units, previously attached to antennas, are centralized in data centers. The main challenge in meeting protocol time con- straints is minimizing the latency of periodic messages exchanged between antennas and processing units. We demonstrate that sta- tistical multiplexing introduces significant logical latency due to buffering […]

    • Paper
    • CESI - Hors LINEACT

    Exploring Emotion Expression Recognition in Older Adults Interacting with a Virtual Coach

    The EMPATHIC project aimed to design an emotionally expressive virtual coach capable of engaging healthy seniors to improve well-being and promote independent aging. In particular, the system’s human sensing capabilities allow for the perception of emotional states to provide a personalized experience. This paper outlines the development of the emotion expression recognition module of the […]

    • Conference
    • Engineering and Numerical Tools

    Calibration améliorée d’un capteur profileur laser pour l’inspection et la reconstruction 3D

    Au cours des dernières décennies, l’inspection et la reconstruction tridimensionnelle des canalisations de gaz et d’eau ont nécessité l’utilisation de capteurs de haute précision capables de fonctionner dans des environnements confinés et à faible texture, posant ainsi des défis aux technologies de détection conventionnelles. Cet article présente la conception, tant matérielle que logicielle, d’un capteur […]

    • Conference
    • Engineering and Numerical Tools

    Occupant behavior and impact of the HVAC system on occupant comfort in two-person offices in a mediterranean climate in the south of France

    The Mediterranean climate of the south of France is characterized by a long and hot summer season. Under these conditions, it is important to understand the impact of the HVAC system on the comfort of office occupants as well as their adaptive behaviors to create a comfortable indoor thermal environment. The objective of this study […]

    • Conference
    • Engineering and Numerical Tools

    Une approche divisive et interprétable de réduction de dimension pour la prédiction de la RUL

    En maintenance, la prédiction de la durée de vie utile restante (RUL) est entravée par la grande dimensionnalité et le manque d’explicabilité. Cette étude propose une approche combinant une méthode innovante de réduction de dimension interprétable, l’IDFC (Interpretable Divisive Feature Clustering), et un modèle LSTM (Long Short-Term Memory) à une couche. L’IDFC s’inspire des algorithmes […]

    • Conference
    • Learning and Innovating

    Les effets directs et indirects de l’écosystème d’innovation sur la performance des PPP en R&D

    Les PPP, et plus particulièrement les consortia de R&D, représentent une nouvelle modalité organisationnelle qui réorganise les structures traditionnelles et crée des dynamiques inédites de collaboration et de gouvernance. En intégrant les ressources et les compétences des secteurs public et privé, ces partenariats permettent de relever des défis complexes et de développer des projets innovants […]

    • Paper
    • Engineering and Numerical Tools

    Double-Layer Soft Data Fusion for Indoor Robot WiFi-Visual Localization

    This paper presents a novel WiFi-Visual data fusion method for indoor robot (TIAGO++) localization. Long-term follow-up experiments show that this method can use 10 WiFi samples and 4 low-resolution images ($58 times 58$ in pixels) to localize an indoor robot with an average error distance of about 1.32 meters 3 months (or 1.7 meters 7 […]


Loading…

Erreur : tout le contenu a été chargé.